reconstruction

Reconstruction-specific Model class(es).

class graphnet.models.task.reconstruction.AzimuthReconstructionWithKappa(*args, **kwargs)[source]

Bases: StandardLearnedTask

Reconstructs azimuthal angle and associated kappa (1/var).

Construct StandardLearnedTask.

Parameters:
  • hidden_size (int) – The number of columns in the output of the last latent layer of Model using this Task. Available through Model.nb_outputs

  • args (Any)

  • kwargs (Any)

Return type:

object

default_target_labels = ['azimuth']
default_prediction_labels = ['azimuth_pred', 'azimuth_kappa']
nb_inputs = 2
class graphnet.models.task.reconstruction.AzimuthReconstruction(*args, **kwargs)[source]

Bases: AzimuthReconstructionWithKappa

Reconstructs azimuthal angle.

Construct StandardLearnedTask.

Parameters:
  • hidden_size (int) – The number of columns in the output of the last latent layer of Model using this Task. Available through Model.nb_outputs

  • args (Any)

  • kwargs (Any)

Return type:

object

default_target_labels = ['azimuth']
default_prediction_labels = ['azimuth_pred']
nb_inputs = 2
class graphnet.models.task.reconstruction.DirectionReconstructionWithKappa(*args, **kwargs)[source]

Bases: StandardLearnedTask

Reconstructs direction with kappa from the 3D-vMF distribution.

Construct StandardLearnedTask.

Parameters:
  • hidden_size (int) – The number of columns in the output of the last latent layer of Model using this Task. Available through Model.nb_outputs

  • args (Any)

  • kwargs (Any)

Return type:

object

default_target_labels = ['direction']
default_prediction_labels = ['dir_x_pred', 'dir_y_pred', 'dir_z_pred', 'direction_kappa']
nb_inputs = 3
class graphnet.models.task.reconstruction.ZenithReconstruction(*args, **kwargs)[source]

Bases: StandardLearnedTask

Reconstructs zenith angle.

Construct StandardLearnedTask.

Parameters:
  • hidden_size (int) – The number of columns in the output of the last latent layer of Model using this Task. Available through Model.nb_outputs

  • args (Any)

  • kwargs (Any)

Return type:

object

default_target_labels = ['zenith']
default_prediction_labels = ['zenith_pred']
nb_inputs = 1
class graphnet.models.task.reconstruction.ZenithReconstructionWithKappa(*args, **kwargs)[source]

Bases: ZenithReconstruction

Reconstructs zenith angle and associated kappa (1/var).

Construct StandardLearnedTask.

Parameters:
  • hidden_size (int) – The number of columns in the output of the last latent layer of Model using this Task. Available through Model.nb_outputs

  • args (Any)

  • kwargs (Any)

Return type:

object

default_target_labels = ['zenith']
default_prediction_labels = ['zenith_pred', 'zenith_kappa']
nb_inputs = 2
class graphnet.models.task.reconstruction.EnergyReconstruction(*args, **kwargs)[source]

Bases: StandardLearnedTask

Reconstructs energy using stable method.

Construct StandardLearnedTask.

Parameters:
  • hidden_size (int) – The number of columns in the output of the last latent layer of Model using this Task. Available through Model.nb_outputs

  • args (Any)

  • kwargs (Any)

Return type:

object

default_target_labels = ['energy']
default_prediction_labels = ['energy_pred']
nb_inputs = 1
class graphnet.models.task.reconstruction.EnergyReconstructionWithPower(*args, **kwargs)[source]

Bases: StandardLearnedTask

Reconstructs energy.

Construct StandardLearnedTask.

Parameters:
  • hidden_size (int) – The number of columns in the output of the last latent layer of Model using this Task. Available through Model.nb_outputs

  • args (Any)

  • kwargs (Any)

Return type:

object

default_target_labels = ['energy']
default_prediction_labels = ['energy_pred']
nb_inputs = 1
class graphnet.models.task.reconstruction.EnergyTCReconstruction(*args, **kwargs)[source]

Bases: StandardLearnedTask

Reconstructs track and cascade energies using stable method.

Construct StandardLearnedTask.

Parameters:
  • hidden_size (int) – The number of columns in the output of the last latent layer of Model using this Task. Available through Model.nb_outputs

  • args (Any)

  • kwargs (Any)

Return type:

object

default_target_labels = ['energy_track', 'energy_cascade']
default_prediction_labels = ['energy_track_pred', 'energy_cascade_pred']
nb_inputs = 2
class graphnet.models.task.reconstruction.EnergyReconstructionWithUncertainty(*args, **kwargs)[source]

Bases: EnergyReconstruction

Reconstructs energy and associated uncertainty (log(var)).

Construct StandardLearnedTask.

Parameters:
  • hidden_size (int) – The number of columns in the output of the last latent layer of Model using this Task. Available through Model.nb_outputs

  • args (Any)

  • kwargs (Any)

Return type:

object

default_target_labels = ['energy']
default_prediction_labels = ['energy_pred', 'energy_sigma']
nb_inputs = 2
class graphnet.models.task.reconstruction.VertexReconstruction(*args, **kwargs)[source]

Bases: StandardLearnedTask

Reconstructs vertex position and time.

Construct StandardLearnedTask.

Parameters:
  • hidden_size (int) – The number of columns in the output of the last latent layer of Model using this Task. Available through Model.nb_outputs

  • args (Any)

  • kwargs (Any)

Return type:

object

default_target_labels = ['vertex']
default_prediction_labels = ['position_x_pred', 'position_y_pred', 'position_z_pred', 'interaction_time_pred']
nb_inputs = 4
class graphnet.models.task.reconstruction.PositionReconstruction(*args, **kwargs)[source]

Bases: StandardLearnedTask

Reconstructs vertex position.

Construct StandardLearnedTask.

Parameters:
  • hidden_size (int) – The number of columns in the output of the last latent layer of Model using this Task. Available through Model.nb_outputs

  • args (Any)

  • kwargs (Any)

Return type:

object

default_target_labels = ['position']
default_prediction_labels = ['position_x_pred', 'position_y_pred', 'position_z_pred']
nb_inputs = 3
class graphnet.models.task.reconstruction.TimeReconstruction(*args, **kwargs)[source]

Bases: StandardLearnedTask

Reconstructs time.

Construct StandardLearnedTask.

Parameters:
  • hidden_size (int) – The number of columns in the output of the last latent layer of Model using this Task. Available through Model.nb_outputs

  • args (Any)

  • kwargs (Any)

Return type:

object

default_target_labels = ['interaction_time']
default_prediction_labels = ['interaction_time_pred']
nb_inputs = 1
class graphnet.models.task.reconstruction.InelasticityReconstruction(*args, **kwargs)[source]

Bases: StandardLearnedTask

Reconstructs interaction inelasticity.

That is, 1-(track energy / hadronic energy).

Construct StandardLearnedTask.

Parameters:
  • hidden_size (int) – The number of columns in the output of the last latent layer of Model using this Task. Available through Model.nb_outputs

  • args (Any)

  • kwargs (Any)

Return type:

object

default_target_labels = ['inelasticity']
default_prediction_labels = ['inelasticity_pred']
nb_inputs = 1
class graphnet.models.task.reconstruction.VisibleInelasticityReconstruction(*args, **kwargs)[source]

Bases: StandardLearnedTask

Reconstructs interaction visible inelasticity.

That is, 1-(visible track energy / visible hadronic energy).

Construct StandardLearnedTask.

Parameters:
  • hidden_size (int) – The number of columns in the output of the last latent layer of Model using this Task. Available through Model.nb_outputs

  • args (Any)

  • kwargs (Any)

Return type:

object

default_target_labels = ['visible_inelasticity']
default_prediction_labels = ['visible_inelasticity_pred']
nb_inputs = 1