graph_definition¶
Modules for defining graphs.
These are self-contained graph definitions that hold all the graph- altering code in graphnet. These modules define what graph-based models sees as input and can be passed to dataloaders during training and deployment.
- class graphnet.models.data_representation.graphs.graph_definition.GraphDefinition(*args, **kwargs)[source]¶
- Bases: - DataRepresentation- An Abstract class to create graph definitions from. - Construct ´GraphDefinition´. The ´detector´ holds. - ´Detector´-specific code. E.g. scaling/standardization and geometry tables. - ´node_definition´ defines the nodes in the graph. - ´edge_definition´ defines the connectivity of the nodes in the graph. - Parameters:
- detector ( - Detector) – The corresponding ´Detector´ representing the data.
- node_definition ( - Optional[- NodeDefinition], default:- None) – Definition of nodes. Defaults to NodesAsPulses.
- edge_definition ( - Optional[- EdgeDefinition], default:- None) – Definition of edges. Defaults to None.
- input_feature_names ( - Optional[- List[- str]], default:- None) – Names of each column in expected input data that will be built into a graph. If not provided, it is automatically assumed that all features in Detector is used.
- dtype ( - Optional[- dtype], default:- torch.float32) – data type used for node features. e.g. ´torch.float´
- perturbation_dict ( - Optional[- Dict[- str,- float]], default:- None) – Dictionary mapping a feature name to a standard deviation according to which the values for this feature should be randomly perturbed. Defaults to None.
- seed ( - Union[- int,- Generator,- None], default:- None) – seed or Generator used to randomly sample perturbations. Defaults to None.
- add_inactive_sensors ( - bool, default:- False) – If True, inactive sensors will be appended to the graph with padded pulse information. Defaults to False.
- sensor_mask ( - Optional[- List[- int]], default:- None) –- A list of sensor id’s to be masked from the graph. Any sensor listed here will be removed from the graph. - Defaults to None. 
- string_mask ( - Optional[- List[- int]], default:- None) – A list of string id’s to be masked from the graph. Defaults to None.
- sort_by ( - Optional[- str], default:- None) – Name of node feature to sort by. Defaults to None.
- repeat_labels ( - bool, default:- False) – If True, labels will be repeated to match the the number of rows in the output of the GraphDefinition. Defaults to False.
- add_static_features ( - bool, default:- True) – If True, the original features will be added as static attributes to the graph. Defaults to True.
- args (Any) 
- kwargs (Any) 
 
- Return type:
- object 
 - forward(input_features, input_feature_names, truth_dicts, custom_label_functions, loss_weight_column, loss_weight, loss_weight_default_value, data_path)[source]¶
- Construct graph as ´Data´ object. - Parameters:
- input_features ( - ndarray) – Input features for graph construction. Shape ´[num_rows, d]´
- input_feature_names ( - List[- str]) – name of each column. Shape ´[,d]´.
- truth_dicts ( - Optional[- List[- Dict[- str,- Any]]], default:- None) – Dictionary containing truth labels.
- custom_label_functions ( - Optional[- Dict[- str,- Callable[- ...,- Any]]], default:- None) – Custom label functions.
- loss_weight_column ( - Optional[- str], default:- None) – Name of column that holds loss weight. Defaults to None.
- loss_weight ( - Optional[- float], default:- None) – Loss weight associated with event. Defaults to None.
- loss_weight_default_value ( - Optional[- float], default:- None) – default value for loss weight. Used in instances where some events have no pre-defined loss weight. Defaults to None.
- data_path ( - Optional[- str], default:- None) – Path to dataset data files. Defaults to None.
 
- Return type:
- Data
- Returns:
- graph