graphs¶
A module containing different graph representations in GraphNeT.
- class graphnet.models.data_representation.graphs.graphs.KNNGraph(*args, **kwargs)[source]¶
- Bases: - GraphDefinition- A Graph representation where Edges are drawn to nearest neighbours. - Construct k-nn graph representation. - Parameters:
- detector ( - Detector) – Detector that represents your data.
- node_definition ( - Optional[- NodeDefinition], default:- None) – Definition of nodes in the graph.
- input_feature_names ( - Optional[- List[- str]], default:- None) – Name of input feature columns.
- dtype ( - Optional[- dtype], default:- torch.float32) – data type for node features.
- perturbation_dict ( - Optional[- Dict[- str,- float]], default:- None) – Dictionary mapping a feature name to a standard deviation according to which the values for this feature should be randomly perturbed. Defaults to None.
- seed ( - Union[- int,- Generator,- None], default:- None) – seed or Generator used to randomly sample perturbations. Defaults to None.
- nb_nearest_neighbours ( - int, default:- 8) – Number of edges for each node. Defaults to 8.
- columns ( - List[- int], default:- [0, 1, 2]) – node feature columns used for distance calculation. Defaults to [0, 1, 2].
- distance_as_edge_feature ( - bool, default:- False) – Add edge distances as an edge feature. Defaults to False.
- args (Any) 
- kwargs (Any) 
 
- Return type:
- object 
 
- class graphnet.models.data_representation.graphs.graphs.EdgelessGraph(*args, **kwargs)[source]¶
- Bases: - GraphDefinition- A Data representation without edge assignment. - I.e the resulting representation is created without an EdgeDefinition. - Construct isolated nodes graph representation. - Parameters:
- detector ( - Detector) – Detector that represents your data.
- node_definition ( - Optional[- NodeDefinition], default:- None) – Definition of nodes in the graph.
- input_feature_names ( - Optional[- List[- str]], default:- None) – Name of input feature columns.
- dtype ( - Optional[- dtype], default:- torch.float32) – data type for node features.
- perturbation_dict ( - Optional[- Dict[- str,- float]], default:- None) – Dictionary mapping a feature name to a standard deviation according to which the values for this feature should be randomly perturbed. Defaults to None.
- seed ( - Union[- int,- Generator,- None], default:- None) – seed or Generator used to randomly sample perturbations. Defaults to None.
- args (Any) 
- kwargs (Any) 
 
- Return type:
- object 
 
- class graphnet.models.data_representation.graphs.graphs.KNNGraphRRWP(*args, **kwargs)[source]¶
- Bases: - GraphDefinition- KNN Graph with relative random walk probabilities (RRWP). - Identical to KNNGraph, but with five extra fields containing absolute and relative positional encoding using RRWP. - abs_pe = graph[“rrwp”] # RRWP absolute positional encoding values rrwp_val = graph[“rrwp_val”] # Non-zero values of the RRWP tensor rrwp_index = graph[“rrwp_index] # Corresponding row, col indices degree = graph[“deg”] # Degree of each node (num. of incoming edges) - Construct k-nn graph representation. - Parameters:
- detector ( - Detector) – Detector that represents your data.
- node_definition ( - Optional[- NodeDefinition], default:- None) – Definition of nodes in the graph.
- edge_definition ( - Optional[- EdgeDefinition], default:- None) – Definition of edges in the graph.
- input_feature_names ( - Optional[- List[- str]], default:- None) – Name of input feature columns.
- dtype ( - Optional[- dtype], default:- torch.float32) – data type for node features.
- perturbation_dict ( - Optional[- Dict[- str,- float]], default:- None) – Dictionary mapping a feature name to a standard deviation according to which the values for this feature should be randomly perturbed. Defaults to None.
- seed ( - Union[- int,- Generator,- None], default:- None) – seed or Generator used to randomly sample perturbations. Defaults to None.
- nb_nearest_neighbours ( - int, default:- 8) – Number of edges for each node. Defaults to 8.
- columns ( - List[- int], default:- [0, 1, 2]) – node feature columns used for distance calculation. Defaults to [0, 1, 2].
- walk_length ( - int, default:- 8) – number of steps for the random walk. Defaults to 8.
- args (Any) 
- kwargs (Any) 
 
- Return type:
- object 
 
- class graphnet.models.data_representation.graphs.graphs.KNNGraphRWSE(*args, **kwargs)[source]¶
- Bases: - GraphDefinition- KNN Graph with random walk structural encoding (RWSE). - Identical to KNNGraph but with an additional field containing the values obtained from RWSE. The encoding can be accessed via - rwse = graph[“rwse”] # random walk structural encoding - Construct k-nn graph representation. - Parameters:
- detector ( - Detector) – Detector that represents your data.
- node_definition ( - Optional[- NodeDefinition], default:- None) – Definition of nodes in the graph.
- edge_definition ( - Optional[- EdgeDefinition], default:- None) – Definition of edges in the graph.
- input_feature_names ( - Optional[- List[- str]], default:- None) – Name of input feature columns.
- dtype ( - Optional[- dtype], default:- torch.float32) – data type for node features.
- perturbation_dict ( - Optional[- Dict[- str,- float]], default:- None) – Dictionary mapping a feature name to a standard deviation according to which the values for this feature should be randomly perturbed. Defaults to None.
- seed ( - Union[- int,- Generator,- None], default:- None) – seed or Generator used to randomly sample perturbations. Defaults to None.
- nb_nearest_neighbours ( - int, default:- 8) – Number of edges for each node. Defaults to 8.
- columns ( - List[- int], default:- [0, 1, 2]) – node feature columns used for distance calculation. Defaults to [0, 1, 2].
- walk_length ( - int, default:- 8) – number of steps for the random walk. Defaults to 8.
- args (Any) 
- kwargs (Any) 
 
- Return type:
- object